رفع-ماتی-از-تصاویر-چهره-به-منظور-استفاده-در-یک-سیستم-بازشناسی-چهره
رفع ماتی از تصاویر چهره به منظور استفاده در یک سیستم بازشناسی چهره
فرمت فایل دانلودی:
فرمت فایل اصلی: doc
تعداد صفحات: 81
حجم فایل: 1821 کیلوبایت

رفع ماتی از تصاویر چهره به منظور استفاده در یک سیستم بازشناسی چهره
نوع فایل: word (قابل ویرایش)
تعداد صفحات : 81 صفحه

چکیده
بازشناسی چهره در زمینه های بیومتریک، بینایی ماشین و تشخیص الگو بوده و دارای کاربرد گسترده ای از جمله مسائل مربوط به سیستم های امنیتی می باشد. از آن جا که عوامل مختلفی از جمله نحوه نورپردازی محیط، نویز، و ماتی تصویر در عملکرد روش‌های بازشناسی چهره کم و بیش تاثیرگذارند، لذا بررسی روش‌های رفع ماتی از تصاویر چهره مورد استفاده در الگوریتم¬های بازشناسی چهره، به منظور ارتقا صحت بازشناسی، اهمیت ویژه ای دارد. با توجه به این موضوع که مسأله اساسی در کلیه روش های بهسازی تصاویر، پی بردن به نوع و مشخصات تابع گسترش نقطه ای (PSF) مربوط به عامل مات کننده تصاویر است، لذا در قسمتی از روش پیشنهادی در این پایان نامه با فراگیری دانش قبلی از روی نمونه‌های آموزش که شامل تصاویر چهره مات شده به صورت مصنوعی می باشند، به شناسایی PSF عامل مات کننده تصاویر چهره، پرداخته شده است. طبق روش پیشنهادی در این پایان نامه ابتدا در مرحله آموزش، مجموعه ای از تصاویر چهره مربوط به پایگاه داده ORLرا با استفاده از چند PSF مشخص، به صورت مصنوعی مات کرده و سپس به آن ها نویز سفید با توان متوسط dB30 اضافه می کنیم. حال، ویژگی هایی متشکل از اطلاعات بیشینه مربوط به اندازه مولفه های فرکانسی تصاویر مات شده با PSF مشابه را در یک دسته قرار داده و با استفاده از شبکه عصبی MLP به فراگیری دانش از روی فضای ویژگی ایجاد شده، می پردازیم. سپس در مرحله آزمایش تصویر چهره مات ورودی که دارایPSF مات کننده نامشخص می باشد را به فضای ویژگی مرحله آموزش نگاشت داده و به استخراج ویژگی های قبلی از روی تصویر نگاشت یافته می پردازیم. حال به کمک شبکه عصبی آموزش داده شده قبلی، نزدیکترین دسته به این تصویر را از بین دسته‌های آموزش داده شده انتخاب، و PSF مات کننده تصاویر مربوط به این دسته را به عنوان PSF مات کننده تصویر چهره مات ورودی، در نظر می-گیریم. در ادامه، با توجه به این PSF و با استفاده از روش دیکانولوشن (عکس پیچش) به بهسازی تصویر ورودی پرداخته و تصویر بهسازی شده را جهت انجام عمل بازشناسی به سیستم بازشناسی چهره تحویل میدهیم.طی روش پیشنهادی در این پایان نامه با ایجاد فضای ویژگی خاص متشکل از اطلاعات بیشینه مربوط به اندازه مولفه های فرکانسی تصاویر مات، موفق به بالا بردن دقت شناسایی PSF (دقت شناسایی بالاتر از %80 در شرایط نویزی) و در نتیجه افزایش دقت سیستم بازشناسی چهره (افزایش دقت سیستم بازشناسی از %833/19 به %837/90) توسط این روش شده ایم. همچنین استفاده از شبکه عصبی جهت شناسایی PSF، از یک طرف باعث کاهش ۱۷۲/۴۱ درصدی متوسط زمان اجرای این روش نسبت به روش های نوین ارائه شده در این زمینه شده، و از طرف دیگر قابلیت پیاده سازی سخت افزاری این روش را نسبت به روش های موجود افزایش داده است.
کلمات کلیدی: رفع ماتی از تصاویر چهره، سیستم های بازشناسی چهره، تابع گسترش نقطه-ای، یادگیری فضای ویژگی، شبکه عصبی MLP